If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+21y-126=0
a = 10; b = 21; c = -126;
Δ = b2-4ac
Δ = 212-4·10·(-126)
Δ = 5481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5481}=\sqrt{9*609}=\sqrt{9}*\sqrt{609}=3\sqrt{609}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{609}}{2*10}=\frac{-21-3\sqrt{609}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{609}}{2*10}=\frac{-21+3\sqrt{609}}{20} $
| 6p-10=4p-4 | | -49-35x+x=-3x-18 | | 40+3x=3x+5(1-x) | | -1-4z=9-3z | | -37=5(w-2)-8w | | 50x+2000=15000 | | 9/z+4=49 | | 12v−6v=12 | | (14x=70) | | -6(p+1)-p-6=7(p+5)+23 | | -5x+2=4x-16 | | 3x-0.5+5x-2*2=(2x+3*2)+10x-5 | | 4+2v=v-4 | | 10x+4=8x8 | | 20-x=35x2 | | 2(y-6)+8=3(3-y) | | (14x=70)* | | 4(x-2)+2(2-x)=16 | | 22.5+7x=180 | | 40x-4.50=112 | | 9y+3=2y+4=15y-25 | | 18+5v=3v | | -6n+4=53 | | 9p-18p+-14=4 | | –14=–8(x+12)+2 | | 7f=–8+5f | | 10x-20=15x | | 3(x-4)=6x+8 | | 2y=1y+5 | | 25=b^2 | | x-(3x-2)=4x-6 | | 12x=14+5-6x |